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Executive Summary 

The accurate simulation and modeling of massively separated flows comprises one of the primary 

obstacles in application of Computational Fluid Dynamics (CFD) as a more routinely used tool in 

engineering design and analysis. The work reported here represents the first step in a program in 

which the long-term objective is the development of a CFD tool for predicting aircraft spin. Such 

a tool will offer numerous advantages over current approaches to predicting spin characteristics, 

as well as other related phenomena. The particular focus is on modeling massive separations us- 

ing Detached-Eddy Simulation (DES), a hybrid method that combines Reynolds-averaged Navier- 

Stokes (RANS) approaches with Large Eddy Simulation (LES). The primary vehicle for assessing 

the simulation methodology was prediction of the flow around a model of an aircraft forebody, 

in crossflow with the freestream at angle of attack. The flow at angle of attack is sensitive to the 

Reynolds number with experimental measurements showing that the side force reverses sign with 

increases in Reynolds number, a reversal being crucial as it propels the spin of an actual forebody. 

Side-force reversal is dependent on the state of the separating boundary layer, i.e., laminar or 

turbulent, and in the first phase of the work, treatment of boundary layer separation is assessed 

using calculations of the two-dimensional separated flows around two configurations: a rounded- 

corner square with the corner radius of the model equal to 1/4 of the body width/diameter, and 

a 2:1 ellipse. The incompressible flow around the configurations is predicted using a fractional 

step method developed for application in curvilinear coordinates. A grid generation scheme was 

developed using the control technique of Hsu and Lee (1991) for creation of structured meshes and 

used for gridding both geometries. This method assures orthogonality of the grid at boundaries 

and control over the spacing to the first mesh point within the domain. The simulation approach 

for this phase of the work was based on solution of the unsteady RANS (URANS) equations with 

the Reynolds stress closed using the Spalart-Allmaras one-equation model. Characteristics of the 

separating boundary layer are established by the inlet conditions. For flows with turbulent bound- 

ary layer separation, a small level of eddy viscosity is prescribed at the inlet to the computational 

domain, sufficient to activate the turbulence model as the fluid contacts the forebody. Separation 

of laminar boundary layers is accomplished using the "tripless" approach of Travin et al. (2001) in 

which the initial eddy viscosity within the domain is non-zero and the inlet eddy viscosity is zero. 

The separating boundary layer is laminar, recirculation in the wake of the body is sufficient to 

sustain the model. Simulation results for each configuration show that both approaches are viable, 

with the distinctly different boundary layer separation characteristics achieved, leading to changes 

in the pressure coefficient and skin friction distributions around the body. 

In the second phase of the work, URANS and DES are used to predict the flow around the 

forebody cross-section modeled by the rounded-corner square, the same cross-section considered 

in the first phase of the study. The inlet velocity is inclined at 10° to the main flow, the configu- 



ration modeling the massively separated flow around the forebody of a jet fighter rotating at high 

angle of attack. The geometry is uniform (extruded) along the statistically homogeneous spanwise 

coordinate for which periodic boundary conditions were applied. Simulations are performed at a 

sub-critical Reynolds number of 105 (based on the freestream speed and body width/diameter) for 

which the separating boundary layer is laminar and a super-critical Reynolds number of 8 x 105 for 

which the separating boundary layer is turbulent. Between these Reynolds numbers experimental 

measurements show a reversal of the side force. DES predictions are evaluated using experimen- 

tal measurements and contrasted with the URANS predictions. The role of the grid is assessed, 

initially through grid refinement performed using structured grids. Subsequently, the use of un- 

structured grids for simulations of unsteady, eddy-resolving turbulent flows is also assessed. The 

unstructured grids are comprised of nearly isotropic tetrahedra away from solid surfaces while the 

boundary layers are comprised of prisms. DES predictions show that following flow detachment, 

a chaotic and three-dimensional wake rapidly develops. The temporal evolution of the streamwise 

and lateral (side) forces acting on the body exhibit strong modulation due to the spanwise variation 

of the flow. Grid refinement deepens the structure of the resolved range of turbulent scales, the 

predictions on unstructured meshes are also demonstrated to be equally accurate as those on struc- 

tured grids. For the super-critical flow, the pressure distribution is close to the measured values, 

both the streamwise and side forces are in adequate agreement with measurements, and the effect 

of numerical parameters are well-understood. For the sub-critical flow, DES side-force predictions 

do not follow the experimental measurements far enough to achieve reversal. Possible causes for 

the discrepancy are discussed. 
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1    Introduction and Overview 

Knowledge of the spin and recovery characteristics of modern aircraft is crucial at a variety of 

levels, including maneuverability, control strategies, and ultimately design. One of the most sig- 

nificant factors affecting spin characteristics for modern fighters is the forebody, with its complex 

vortical flows and long moment arm. Laboratory measurements of spin characteristics are of lim- 

ited utility since it is not possible to resolve important Reynolds number effects because of the 

range of available tunnels. Numerical simulation, therefore, provides an important tool that should 

ultimately provide higher-fidelity evaluations of aircraft spin than current approaches. 

Predicting the physics of spin has remained a substantial challenge to modeling approaches, 

e.g., the flows are characterized by unsteady massive separation and the dependence on transition. 

Simulation techniques used for prediction of these phenomena at high Reynolds numbers have 

traditionally relied on Reynolds-averaged approaches which are unable to represent these physics 

to sufficient accuracy. The enormous computational requirements to resolve boundary layers using 

techniques which incorporate more flow details, such as Large Eddy Simulation (LES), will prevent 

their application to whole domains at the Reynolds number ranges encountered in applications for 

the foreseeable future (e.g., see Spalart et dl. 1997, Spalart 2000). 

Unfortunately, the performance of numerical models has been inaccurate in most instances 

due to their inability to accurately predict the complex and unsteady effects associated with spin. 

Vortical flows, crossflow separations, and sensitivity of forces and moments to Reynolds number 

greatly challenge modeling approaches. These factors also supply the overall motivation for the 

present fundamental investigations and the need to develop and assess improved techniques for 

predicting complex, separated flows at high Reynolds numbers. 

1.1    Background: Spin 

The characteristic motion of an aircraft following stall in which the plane descends rapidly along 

a more or less helical trajectory is known as the spin. Spin has been an important problem for 

civil and military aircraft since the beginning of flight (see Durand 1934 and Anderson 1979 for 

historical reviews). While important, prediction of spin characteristics is difficult and is dependent 

upon a large number of aerodynamic parameters, including slope of the lift curve top, rolling 

moment, roll and yaw damping, pitching and yawing moments, etc. While stable at low angle of 

attack, some of these rotary derivatives can change sign at stall, remain unstable at high attack 

angles and promote spin. 

Early spin models were developed from force and moment equilibrium under steady conditions 

(e.g., see Tischler & Barlow 1980 and references therein). The objective was to identify those 

factors most affecting the balance of forces and moments during a steady spin and to use linear 

analyses to consider dynamic behavior for states near the steady spin. Linear theories, while able 
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to predict some aspects of steady spins, cannot account for important, and highly nonlinear, effects 

such as sideslip. 

Most of what is known about spin modes has been derived from rotary balance data (e.g., see 

Bihrle et al. 1978, Hultberg et al. 1980). Recent measurements and analysis of rotary balance 

data obtained at the Air Force Research Laboratory (AFRL), while not directly considering spin, 

provides an illustration of the complex fluid mechanics which challenge predictions (Jenkins et al. 

1996, Jobe et al. 1996, Grismer & Jenkins 1997, Jenkins 1997). Reported in these investigations 

are in-depth studies of a 65 degree delta wing at high angles of attack. The main focus was 

on the complex development of the leading-edge vortices in regimes where vortex breakdown 

occurs. Aerodynamic reactions are sensitive to breakdown and related phenomena which occur 

over disparate time scales. Because linear models cannot account for these effects, subsequent 

efforts have focused on development of nonlinear models with time constants in aerodynamic 

response determined from measurements (e.g., see Tobak & Chapman 1985, Troung & Tobak 

1990, Myatt 1997). 

Simulation work relevant to the the research reported here includes the solutions of the un- 

steady, three-dimensional compressible Navier-Stokes equations of the flow around the delta wing, 

but at lower Reynolds number, than considered in the AFRL rotary measurements. The objective 

was to determine if yaw rate effects evident in coning motions from rotary balance tests will sig- 

nificantly change the mean location of vortex breakdown. Tromp (1998) investigated effects of 

roll and yaw rates by considering the responses from a coning motion and a pure roll-rate helical 

motion. Tromp found that the movement in vortex breakdown location with yaw rate was rela- 

tively small, suggesting that using coning motion to estimate the rate effects on critical states may 

provide reasonable estimations. 

An effect recognized to be important, but not considered in the work summarized above is 

that of the Reynolds number. Though spin characteristics are known to exhibit strong sensitivity 

to Reynolds number (e.g., see McCormick 1981), there have been relatively few investigations 

of Reynolds number effects in spin or spin-related flows. One attempt is the work reported by 

Fritz (1995), who used RANS computations to predict spin characteristics of generic forebody 

cross-sections. Two-dimensional solutions were compared to two-dimensional wind tunnel data of 

Polhamus et al. (1959) and a strip theory method was used to integrate the solutions to compare 

with data gathered for four generic, rotary balance models. Fritz (1995), while able to predict the 

proper spin in super-critical Reynolds number regimes, was unable to predict the proper spin in 

sub-critical regimes. The major difficulties encountered were correctly and consistently predicting 

the location of flow separation and the inability of turbulence models to handle the varying length 

scales of separated, bluff body flows. 

The lack of reliable methods for handling Reynolds number variations severely limits CFD 

for predicting spin and improved approaches have long been sought. Experimental resolution of 



Reynolds number effects requires costly and time-consuming tests, probably using more than one 

wind tunnel. Models of aerodynamic response require some calibration using either experiments or 

simulations. Unfortunately, previous computational efforts have not considered Reynolds number 

effects or have been unable to predict spin characteristics over a range of Reynolds numbers using 

available strategies, i.e., RANS techniques without clear control of transition. The drawback of 

current simulation strategies based on solution of the Reynolds-averaged Navier-Stokes equations 

is that accurate prediction of spin requires accurate prediction of geometry-dependent, unsteady 

three-dimensional turbulent motions which are very important in the separated flows characteriz- 

ing spin. These eddies, arguably, are what defeats traditional RANS turbulence models, of any 

complexity. Presented next is an overview of methods used for predicting complex flows at high 

Reynolds numbers, an overview that is used to provide the context for the technique forming the 

backbone for this research: Detached-Eddy Simulation. 

1.2    Background:   Hybrid methods for predicting high Reynolds number 
flows 

Most high-Reynolds number predictions are currently obtained from solutions of the Reynolds- 

averaged Navier-Stokes (RANS) equations. While the most popular RANS models appear to yield 

predictions of useful accuracy in attached flows as well as some with shallow separations, RANS 

predictions of massive separations have typically been unreliable. RANS models, calibrated in 

thin shear layers, appear unable to consistently represent to sufficient accuracy the geometry- 

dependent, chaotic and unsteady features of massively separated flows. This is the case even 

with unsteady RANS, which is often capable of producing vortex shedding, though shedding from 

URANS predictions is typically non-chaotic and exaggerated in amplitude (e.g., see Travin et al. 

2001). URANS predictions of drag, for example, have typically been too high, though it should be 

recognized that this pessimistic view of URANS is not a universal one (Durbin 1995). 

The relatively poor performance of RANS models has motivated the increased application of 

Large Eddy Simulation (LES). Away from solid surfaces, LES is a powerful approach, providing 

a description of the large, energy-containing scales of motion that are typically dependent on ge- 

ometry and boundary conditions. When applied to boundary layers, however, the computational 

cost of whole-domain LES does not differ significantly from that of Direct Numerical Simulation 

(DNS) (Spalart et al. 2000). The "large eddies" close to the wall are physically small in scale, in a 

whole-domain LES (i.e., without wall modeling), these small near-wall structures are dynamically 

important and must be resolved in order to accurate predict boundary layer evolution. In boundary 

layers without sufficient resolution of the wall-layer structures, LES predictions of boundary layer 

growth and/or separation will be adversely affected. 

These and other considerations provided the motivation for development of Detached-Eddy 

Simulation (DES) by Spalart et al. (1997). DES belongs to the class of hybrid methods which 



attempt to combine RANS and LES, exploiting the accuracy and efficiency of RANS approaches in 

the thin shear layers not far from the calibration range of the model, and LES for direct resolution of 

the geometry-dependent and three-dimensional eddies in regions where such a treatment is desired. 

DES was developed independently of a different approach proposed by Speziale (1998) also aimed 

at combining RANS and LES. Speziale (1998) proposed damping the Reynolds stress predicted 

by a second-moment closure approach, (v,iUj)(MK by a factor a, 

(uiUj) = a(uiUj)(M), (1) 

where a < 1. The Reynolds stress (uiUj) on the left-hand side (1) is then supplied to the momen- 

tum equations. Speziale (1998) proposed that the damping a be determined based on a measure of 

the local resolution compared to the Kolmogorov scale, 

a 1 - exp(-/3(LA/L*) (2) 

where LA is a lengthscale related to the grid size, LK is the Kolmogorov lengthscale and ß and 

n are adjustable parameters. Two limits of (2) are well defined. The first limit corresponds to 

the "RANS limit" of the model for which LA >> LK in which case a —> 1 and the Reynolds 

stress supplied to the momentum equations is identical to that obtained from the particular second- 

moment closure being employed. The second limit corresponds to the "DNS limit" for which 

LA << LK in which a —> 0 and the Reynolds stress supplied to the governing equations vanishes. 

Intermediate between these regimes the damping factor a will be less than unity, corresponding to 

only a fraction of the model stress a(uiUj)^M"> predicted using the second-moment closure being 

supplied to the Navier-Stokes equations. In this intermediate range, therefore, part of the turbulent 

stress is modeled, the remaining part to be resolved directly on the mesh. This intermediate regime 

corresponding to the "LES regime" of the model. An important question is the response of the 

model in its "LES regime" for computations in which LA >> LK, the criteria also used to define 

the "RANS region", i.e., the form of the model should be fundamentally different in the RANS and 

LES limits though it appears from (1) and (2) that there could be some ambiguity when LA >> 

LK- Von Terzi and Fasel (2002) have adopted the basic outline of the above approach, one of the 

main modifications being the introduction of a "contribution function" which plays a similar role 

as a in (2), dictating the level of the turbulent stress to be modeled versus resolved. 

Batten et cd. (2000) have developed a hybrid RANS-LES method referred to as Limited Nu- 

merical Scales (LNS). The approach appears to be very similar to DES, the method reducing to a 

RANS treatment of the boundary layer and LES away from solid surfaces. The relation (1) com- 

prised the basis for the initial form of the model, though rather than defining a using (2), Batten et 

al. (2000) propose to base a essentially on a ratio of eddy viscosities in the RANS and LES regions, 

mm({Lv)LBs,{Lv)EA) ,a, a = —— , (3) 
{LV)EA 



where (LV)LES represents a lengthscale-velocity product obtained from an LES model and (LV)EA 

represents a lengthscale-velocity product obtained from an ensemble-averaged model. 

As described in greater detail in §3.1, DES has RANS behavior near the wall and becomes 

a Large Eddy Simulation in the regions away from solid surfaces provided the grid density is 

sufficient. The formulation is based on a modification to the Spalart-Allmaras one-equation model 

(Spalart and Allmaras 1994, referred to as S-A throughout). Some of the principle advantages of 

DES are that the technique is non-zonal and computationally feasible for high Reynolds number 

prediction, but also resolves time-dependent, three-dimensional turbulent motions as in LES. 

A recent review of some of the applications of DES can found in Strelets (2001). DES has pre- 

dicted to much higher accuracy than traditional approaches the flow around an airfoil at high angle 

of attack, another necessary pre-requisite for prediction of spin (Shur et cd. 1999). DES has also 

been used to successfully predict the flow around a sphere, an important benchmark, resolving the 

time-dependent forces around the body to a higher accuracy than methods based on the Reynolds- 

averaged Navier-Stokes (RANS) equations, and in a Reynolds number range higher than can be 

realistically attempted using full-domain LES (Constantinescu et cd. 2002). An important outcome 

of these studies is that the cost of DES exhibits a weak dependence on Reynolds number, no worse 

than RANS methods. 

Because the boundary layer is predicted by the S-A model, the empirical input to the technique, 

as true for all hybrid methods, is not small and in DES, for example, the prediction of boundary 

layer separation is under control of the RANS model. Assessing the technique, therefore, remains 

an important task, not only with respect to aspects such as predicting boundary layer separation 

(the primary consideration of the first part of this work), but also the response of the method to the 

numerical approach, e.g., the grid and timestep, which are some of the other aspects scrutinized in 

the second part of the work. 

2    Objectives and summary of the approach 

The research described in this report is a pre-cursor to the ultimate application which is prediction 

of the spin characteristics of full aircraft at flight Reynolds numbers. The flow fields characterizing 

spinning aircraft are massively separated, providing a "natural" application for DES and therefore 

the principle objective was to apply and assess the method in a flow important to understanding and 

accurately predicting spin. Though a natural application for the model, calculations of complex 

configurations at high Reynolds numbers challenge the entire computational approach, including 

numerical aspects related to features such as grid generation and grid type (i.e., structured or un- 

structured), to aspects impacting the physical modeling, an issue of primary importance being the 

treatment of the separating boundary layer. 

The work is divided into two parts. For spin prediction, a key issue is the sign of the side force, 



and whether the side force is spin-damping or spin-propelling. The side force, both in magni- 

tude and sign, is dependent the state of the separating boundary layer, i.e., whether the separating 

boundary layer is laminar or turbulent. In the context of hybrid methods, for which boundary layer 

separation is under control of the RANS model, the type of transition is controlled by the eddy vis- 

cosity using the S-A model. In the first phase of the work, calculations of two-dimensional flows 

were used to investigate approaches for controlling the type of boundary layer separation and to 

assess viability for the more computationally-intensive three-dimensional calculations performed 

in the second phase of the work. 

In the second phase of the work the factors included in the investigation include the role of 

the grid, assessment of the flow solver and treatment of boundary layer detachment for three- 

dimensional configurations. Given the end application of full-aircraft configurations, unstructured 

grids form an integral component of the present approach and therefore an unstructured-grid solver 

was employed for numerical solution of the Navier-Stokes equations for the three-dimensional 

calculations. 

The disadvantage of the current unstructured approach is that the numerical procedure is only 

second-order accurate in time and space and stabilized via non-linear (TVD) numerical dissipa- 

tion. Related investigations have shown that the artificial dissipation associated with the numerical 

scheme can be as large as that represented by the turbulence model and therefore care must be 

exercised in application of these methods to eddy-resolving simulations such as LES (e.g., see 

Mittal and Moin 1997). This in turn motivates another goal of the present effort - to explore the 

accuracy of the current second-order method on both structured and unstructured grids for DES 

applications. This is not a simple matter of verifying the order of accuracy, which is difficult to 

define and predict in LES and especially hybrid methods. Nevertheless, the primary tool for such 

a study remains grid refinement. 

3   Approach 

3.1    Detached-Eddy Simulation 

Detached Eddy Simulation (DES) is a hybrid technique first proposed by Spalart et al. (1997) for 

prediction of turbulent flows at high Reynolds numbers (see also Spalart 2000). The motivation for 

developing DES was to combine the most favorable aspects of RANS and LES, i.e., the acceptable 

predictions using RANS models of thin shear layers and LES for resolution of time-dependent, 

three-dimensional large eddies which are typically geometry-dependent. RANS models are less 

accurate in separated regions than in the thin shear layers where they are calibrated. In these 

regions LES is very attractive since the large scales can be resolved without the vast increases in 

grid resolution necessary in LES of boundary layers. 

The DES formulation is based on a modification to the S-A model such that it reduces to 



RANS close to solid surfaces and to LES away from the wall (Spalart et al 1997). The S-A RANS 

model of Spalart and Allmaras (1994) is summarized below along with a discussion of the DES 

formulation. Additional discussion can be found in Spalart (2000) and Strelets (2001). 

In the S-A RANS model, a transport equation is used to compute a working variable used to 

form the turbulent eddy viscosity, 

,2 ' 

DV 

~Dt 
Cwljw 7.H2 =   cbiS V 

+   - [V • ((u + v)Vv) + cb2 (V?)2] + fa AU2 

where v is the working variable. The eddy viscosity ut is obtained from, 

.A 7, 
VL = v fvl, fvl 

X 
X3 + Cyl 

X = 

where v is the molecular viscosity. The production term is expressed as, 

S = /u3<-> "I ö~lö-fv2 
Kzdz 

fv2 =      1 + 
X 

fv3 — 
(l + X.fvl)(l-fv2) 

(4) 

(5) 

(6) 

(7) 
CviJ X 

where S is the magnitude of the vorticity. The production term as written in (6) differs from 

that developed in Spalart and Allmaras (1994) via the introduction of fv3 and re-defmition of fv2. 

These changes do not alter predictions of fully turbulent flows and have the advantage that for 

simulation of flows with laminar separation, spurious upstream propagation of the eddy viscosity 

into attached, laminar regions is prevented. The function /„, is given by, 

fw   =9 
r i+431 
.56 + 43. 

The function /t2 is define d as, 

nl/6 

9 = r + cw2 (r
6 -r), r = 

Sn2d2 (8) 

(9) Ui = C(3exp(-Q4X2) • 

The trip function ftl is specified in terms of the distance dt from the field point to the trip, the wall 

vorticity uL at the trip, and AC/ which is the difference between the velocity at the field point and 

that at the trip, 

fa = Ql9texp (-ca-^n [d2 + g2d2]) , (10) 
AU2 

where gL = min(0.1. AU/UJLAX) and Ax is the grid spacing along the wall at the trip. The wall 

boundary condition is v = 0. As described in §4, the inlet condition on v was prescribed for either 

fully turbulent boundary layers prior to separation or with zero upstream values of v that yielded 

laminar boundary layers prior to separation. The constants are c^ = 0.1355, a = 2/3, C(,2 = 0.622, 



K - 0.41, cwi = cbi/K
2 + (1 + cb2)/a, cw2 = 0.3, cw3 = 2, cvl = 7.1, c„2 = 5, ca = 1, ca = 2, 

Q3 = l.l,andct4 = 2. 

The DES formulation is obtained by replacing the distance to the nearest wall, d, by d, where 

d is defined as, 

d = mm{d,CDESA), (11) 

with 

A = max(A:r, Ay, Az) . (12) 

where Ax, Ay, and Az are the grid spacings. In "natural" applications of DES, the wall-parallel 

grid spacings (e.g., streamwise and spanwise) are at least on the order of the boundary layer thick- 

ness and the S-A RANS model is retained throughout the boundary layer, i.e., d = d. Conse- 

quently, prediction of boundary layer separation is determined in the 'RANS mode' of DES. Away 

from solid boundaries, the closure is a one-equation model for the SGS eddy viscosity. When the 

production and destruction terms of the model are balanced, the length scale d = CDES& in the 

LES region yields a Smagorinsky eddy viscosity v oc SA2. Analogous to classical LES, the role of 

A is to allow the energy cascade down to the grid size; roughly, it makes the pseudo-Kolmogorov 

length scale, based on the eddy viscosity, proportional to the grid spacing. "Wall distance" is the 

distance to the nearest wall, which can be clearly defined even in complex, fully three-dimensional 

geometries with multiple length scales. The additional model constant CDES = 0-65 was set in 

homogeneous turbulence (Shur et cd. 1999) and is used without modification in this work. 

There are several advantages to the DES formulation described above. The transition between 

RANS and LES is seamless in a formulation sense: single equation, no explicit declaration of 

RANS versus LES zones. The solutions shown below show that the DES is seamless in an appli- 

cation sense, i.e., no artificial transitions between the solution domains. There is one solution field, 

all coupled by the Navier-Stokes equations, and the solution has a different character in different 

regions. 

A further advantage of the length scale switch in DES is that it allows the user to 'steer' the 

physics where needed, i.e., finer resolution in regions where the additional flow detail from an LES 

treatment is desired. The length scale switch in the model has the effect of drawing down the eddy 

viscosity so the modeled equation can allow development of instabilities, which then feed a cascade 

to smaller scales, limited by the grid as in canonical LES. Regions of the flow not far from the thin 

shear layer approximation are very expensive to resolve using LES, and can be adequately handled 

by the S-A model within a RANS treatment. Important for applications is that the increase in cost 

of DES with Reynolds number is weak, similar to RANS, unlike in full-domain LES in which 

there is an enormous increase in cost because of the rapid increase in resolution requirements near 

walls (see also Nikitin et al. 2000). 



3.2    Numerical methods 

3.2.1    Incompressible flow solver 

The approach to investigation of boundary layer separation characteristics for the first phase of the 

study was based on solution of the incompressible Reynolds-averaged Navier-Stokes equations. A 

code for implementation of a fractional-step numerical method was developed, the basic aspects 

of the numerical approach are outlined in this section. 

The unsteady incompressible Navier-Stokes equation written in tensor form are expressed as, 

duj 

dxi 
0. (13) 

dui     duiUj 

dt        dxi 

1 dp      _d__ 

p dxi     dxj 

dut     duj 

dxj      dxi 
(14) 

where the velocity is denoted uit the pressure p, density p, and v is the fluid kinematic viscosity. 

Non-dimensionalizing the above using a characteristic length L and characteristic velocity u^ 

results in a re-definition of the lengths, time, and dependent variables, 

P 
Ui Ui/Uc 

xi — XijL . p 
PK 

t = tUoo/L, 

and the corresponding form of the non-dimensionalized equations, 

dui       d dp 

dxi 

d dui     duj 

dx-i      dxj L3 

(15) 

(16) 
dxj UOQL 

The numerical approach to approximation of the above system is based on integration of (16) 

over an arbitrary (fixed) control volume V, 

duf d   1 du: 
dV, (17) 

r v dxj Re [ dxj     dxi 

with the Reynolds number Re = u^Ljv. The equations can be cast equivalently in vector form 

as, 

du 
dV   = 

+ 

V-(-üü)dV+ /  V-(-P7)d^- 
v Jv 

1    Vü+(Vü)T dV, 
v       Re 

(18) 

where üu is a dyad (second order tensor). Using Gauss' theorem, Jv V • AdV = fs A • dS, the 

equations governing the constant-density and isothermal flow over the fixed control volume V with 

surface 5 can finally be written as, 

u-dS = 0 (19) 



Jv dt          Js 
■dS, 

where T is given in operator form as, 

T = -üü - Pi + 4- [Vü + (vn)Tl 
Re 

or in tensor notation expressed as 

Tij = -UiUj - P5ij + — 
dui     duj 

dxj     dxi 

Coordinate transformation 

(20) 

(21) 

(22) 

The equations (19) and (20) are solved in a general curvilinear system that is simplified for the 

present investigations to two-dimensional configurations, i.e., with a uniform (non-transformed) 

spanwise coordinate z. The first step in solution of (19) and (20) is consideration of the coordinate 

transformation of a vector R from the Cartesian system to a curvilinear non-orthogonal system as 

shown schematically in Figure la, R(x, y, z) —> R(f, 77, z). 

In what follows, the natural local base of the transformed curvilinear coordinate system (£, 77, z) 

is denoted eq = dr/dq, q = £, 77, z. The transformation between the two systems is achieved by 

defining a new base in terms of the vector product of the natural local basis eg, Sq = e9+1 x eq+2 

(q, cyclic permutation). Note that the vector Sq has a magnitude equal to the area of the paral- 

lelogram spanned by natural local basis (e9+1, eq+2) and is perpendicular to the plane defined by 

(eg+i, eg+2). Using the orthogonality between the new basis Sq and its reciprocal base Sg, the se- 

ries operations in generalized curvilinear systems as outlined below will naturally yield dependent 

variables that are the volume fluxes, rather than the primitive variables. 

At an arbitrary point (i, j, k) within the domain, the area tensor is defined as, 

S = {&.S\SZ), (23) 

where the vector components are defined as, 

* = £»<* S- = £x* S--£x* (24) 
or)     oz oz     oti of      orj 

or in a more compact form, 
or or 

_   - -- (25) 
d(q + l)      d(q + 2) 

where q = f, 77, z are in cyclic order. The vector quantity Sq has the magnitude of the area of the 

face and direction given by the normal of the face (c.f., Figure lb). 

The partial derivative of the position vector r(a;(f. rj),y(^, 77), z) with respect to f, 77, z are eval- 

uated using a central finite difference approximation. For example, with reference to Figure lb, 

Or 

3£ 
r[z(f, V, z),y{£, V), z]e ~ [^,V,z),y(^r]),z]w 
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The area vectors S9 are required to satisfy geometric constraints, the first of which is that for 

any computational cell within the domain the cell should be closed, i.e., 

dS = 0 , (27) 
s 

or in discrete form, 

J] Sq = 0 . (28) 
i 

To satisfy (26) to machine accuracy in the computation, dr/dq needs to be consistently evaluated 

with respect to the computational grid points. In the present computations, the area vectors Sq and 

their reciprocal bases evaluated and stored at cell centers. Area vectors at cell faces are obtained 

via simple arithmetic averaging. 

The volume of the computational cell is evaluated from 

V=Si + S^ + Sl ■(rfne-vbsw), (29) 

with the geometric constraint on the volumes specified as, 

J2 V = Vdomain . (30) 
cells 

Discretization of the continuity and momentum equations 

The continuity constraint is discretized in its integral form, applied to a given computational 

volume and with reference to Figure lb takes the form, 

(S« • ü)e - (S« • u)w + (S" • u)„ - (S* ■ u)s + (S2 • u), - (S* • ü)6 = 0 . (31) 

The form (31) suggests dependent variables different than the primitive variables. The quantities 

in (31) represent volume fluxes and can be formally defined, 

u« = S? • Ü = S^i + S^Uj + Sluk (32) 

vP = S" ■ u = S>; + Sv
yUj + S]uk (33) 

uz = Sz ■ ü = Sz
xUi + Sz

yUj + Sz
zuk (34) 

where ifi,u7),uz are the volume fluxes over the £,r],z faces of a primary control volume, and 

Ui, Uj, iLk are the Cartesian velocity components. 

The introduction of the volume fluxes leads to the continuity constraint expressed as, 

ul-ul + ul-u>! + uz
f-uz

b = 0 (35) 
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where uq = {u^,uv.uz). An advantage of the use of volume fluxes and continuity constraint 

written as (35) is that global mass conservation is easily expressed via, 

]T uq = 0 (36) 
total cell faces 

The integral form of the momentum equation with Cartesian velocity components as unknown 

variables is rewritten below, 

lft
dv=SLT-is- <37) 

Approximating the above over an arbitrary (and fixed) control volume V yields, 

V~ = y^Sq-T = F (38) 
dt      ^ 

9 

where F represents the total flux through the computational cell. 

Using the relations (32)-(34), the momentum equations along direction q with u^.u^jU2 as 

variables are, 

S9 • (V^) = V^- = S" ■ F (39) y    dt' dt 
where q = £ or rj or z. The momentum equations in the form (39) are those considered next for 

numerical approximation. 

Fractional step method 

Writing (39 for the £ direction, with reference to Figure lb, 

V^ = S« • F = S« • £S« -T] = L£, (40) 
9 

The linear operator L^ is split into several parts, 

L( = Ht. + Äj + D€ + Diitx , (41) 

where H^ are the nonlinear convection terms, R^ the pressure term, D^ are the diffusion terms that 

are advanced implicitly, and D^ex represents the diffusion terms advanced explicitly. The decom- 

position of the entire diffusion term into two components is to more efficiently facilitate imple- 

mentation of the fractional step method. Essentially, D^(u^) contains terms similar to d2ifi/d£,2 + 

d2ui/dq2 + d2u^/dz2, while D^ex contains the rest of the diffusion terms, those depending on the 

cross derivatives. 

The explicit portion of the time advance is achieved using second-order Adams-Bashforth for 

the convection terms, 

H,(uq) = ^Hi(ur-\Hi(uT-1, (42) 
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the pressure term advanced using implicit Euler, 

Rs{P) = Ri(P)n+1, (43) 

and Crank-Nicholson for the implicit diffusion terms, 

D^)=1-D^r+1 + 1-Di(u
i)\ (44) 

and second-order explicit Adams-Bashforth scheme for the explicit diffusion terms, 

Diiex(u") = \Ditex(ur ~ l-DLex{ui)n-1 (45) 

Finally, the temporal discretization of (40) can be written for the three components of the momen- 
tum equation as, 

V^U)    At 
[    '     =   -{ZH^uT - Hi(u")n~1] + RdPn+l) (46) 

+ ±[3Dtiex(uT - Ditex(u
qrl] + \[DMr+1 + Dz(ut)n], 

V    '    At
[    '      =   -m^-H^uT-^ + RniP^1) (47) 

+ l[3DViex(uT - Dv,ex(uT-1} + llDn(u'T+1 + D„(u"r), 

Vz
{        A/ =   ~[3Hz(uT-Hz(uT-l] + R,(Pn+l) (48) 

+ 1-{3Dz,ex(u
zT - iW«T_1] + \[DMT+l + Dz(uT] ■ 

Summary of the fractional step method 
The system (31) and (46)-(48) is solved using a fractional step method, comprised of three 

sequential operations: computation of a provisional velocity field using the non-linear and viscous 
terms; calculation of the pressure field by solving the Poisson equation, and finally projection of 
the intermediate velocity field onto a divergence-free space at the new time step using the pressure 
gradient. Written in a compact form, the series of operations are 

Aü   =   rhs + mbc (49) 

AtDG(t>n+i   =   Dü-cbc (50) 

ün+1   =   Ü-AtG0n+1 (51) 

where the G submatrix is the discrete gradient operator and D is the discrete divergence oper- 
ator. The exact expressions for the coefficient submatrix A and right-hand-side submatrix r are 
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dependent on the specific temporal and spatial discretizations. The unknown discrete velocity and 

pressure vectors are denoted u"+1 andpn+1. Boundary condition vectors mbc and cbc are defined 

such that when combined with operators G and D the original system with appropriate boundary 

conditions can be fully recovered. 

Given the transformation to a general curvilinear system as outlined above, the fractional step 

method as implemented takes the form for the volume fluxes as, 

Aüq   =   (S«,S"1S
2)T-rhs + (S«,S,',S*)T-mbc 

(S{
1S",Si)r-Ai£)G^n+1   =   Duq-(S«1S'"1S

2)r-cbc 

=   uq-(Se,S",Sz)T-AiG0' qn+l       in+1 

(52) 

(53) 

(54) 

where the T superscript denotes the transpose. The vector of volume fluxes uq is the contravariant 

component of ü in the coordinate system defined by S9 and Sr 

3.2.2    Compressible flow solver 

Solutions of the compressible Navier-Stokes equations are obtained using Cobaltgo, an unstruc- 

tured finite-volume method developed for solution of the compressible Navier-Stokes equations 

and described in Strang et cd. (1999). The governing equations for a compressible flow written in 

integral form are expressed as, 

d_ 

at 
QdV + / / (/« + gj + hk) ■ MS = / / (n + sj + tk) ■ ndS, (55) 

where, 

Q 

p 
pu 
pv 
pw 
pe 

In the above, a = UTX 

f = 

pu 
pu2 + p 

puv 9 = 
puw 

u(pe +p)_ 

pv 
puv 

pv2 +p h = 
pvw 

v(pe + p)_ 

pw 
puw 
pvw 

pw2 +p 
w(pe +p) 

r = 

" 0 " "0" ' 0 " 
7~xx TXy 7~xz 

Txy s = Tyy t = Tyz 

Txz Tyz Tzz 

a _ b _ c 

(56) 

VT, xy WTX 

(57) 

+    kTx,    b    =    UTXy    +   VTyy    +   WTyZ    +   kTy ,    Wl6.   C    =    UTXZ    + 

vTyz + WTZZ + kTz. A fluid element volume over which the equations are enforced is denoted V; 

the bounding surface as S with outward-pointing unit normal n. The Cartesian unit vectors are i, 

j, and k. The fluid density is denoted p, p is the pressure; u, v, and w are the velocity components; 

e is the specific energy per unit volume; T is the temperature; k is the thermal conductivity; and 

TXX, Tyy, TZZ, Txy, Txz, and Tyz are the viscous stress tensor components. The ideal gas law closes 
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the system of equations and the entire equation set is non-dimensionalized by freestream density 

and speed of sound. 

Integrating the equations around finite volumes in the domain leads to the semi-discrete form 

for the system, 

Vi 
d3i + £ (/^ + gM3 + hMQ . hMSM = j^ (rMj + SM5 + tMk) . ÜMSM _ (5g) 
dt 

where the subscripted i and superscripted M denote quantities for the ith cell and the Mth face 

of cell i, respectively, and Ni is the number of faces bounding cell i. The equations above can 

be solved on arbitrary cell types in Cobalt^ (e.g, hexahedrals, prisms, tetrahdrons). The spatial 

operator uses the exact Reimann solver of Gottlieb and Groth (1988), least squares gradient calcu- 

lations using QR factorization to provide second order accuracy in space, and TVD flux limiters to 

limit extremes at cell faces. A point implicit method using analytic first-order inviscid and viscous 

Jacobians is used for advancement of the discretized system. For time-accurate computations, a 

Newton sub-iteration scheme is employed, the method is second order accurate in time. Additional 

details on the method can be found in Strang et al. (1999). 

For simulation of turbulent flows, an averaged set of the above equations are considered, this 

process leading to turbulent stresses that must be modeled in terms of other variables. A Boussi- 

nesq approximation is invoked in the momentum equations and the turbulent eddy viscosity, ßt, is 

used to relate the stresses to the strain rate. The turbulent heat flux is also modeled using a gradient- 

transport hypothesis, requiring specification of a turbulent thermal conductivity kt. Reynolds anal- 

ogy is applied and the turbulent heat flux is modeled using a constant turbulent Prandtl number, 

Prt = (Cpfj,t)/ki, of 0.9 Using turbulent eddy viscosity and turbulent conductivity, the variable p 

is replaced by (/J + /it) and k is replaced by (k + kt) in the governing equations. 

For parallel performance, Cobaltgo uses the domain decomposition library ParMETIS (Karypis et 

al. 1997) to provide nearly perfect load balancing with a minimal surface interface between zones. 

Communication between processors is achieved using Message Passing Interface (MPI), with par- 

allel efficiencies above 95% on as many as 1024 processors (see also Grismer et al. 1998). 

3.3    Flow configuration and simulation design 

In the first part of the study, two-dimensional computations of the flow around canonical forebody 

cross-sections were performed: a rounded-corner square and a 2:1 ellipse. Views of both cross 

sections for the two-dimensional computations are shown in Figure 2. For the rounded-corner 

square, the radius is 1/4 of the width/height ("diameter", D) of the forebody, similar to the cross- 

sections of the X-29 and T-38. With reference to Figure 2, the flow is at angle of attack a of 10° 

to the horizontal (x) axis. This is the angle of attack in the idealized two-dimensional problem, 

not the angle of attack of the airplane.  In simplest terms, the computation emulates that of an 
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forebody at 90° angle of attack (an exactly flat spin), and rotating. The angle of attack here is then 

the arctangent of the ratio VtD/V where Q is the spin rate, D the distance from the nose to center 

of rotation of the spin, and V its sink velocity. 

For the three-dimensional computations the numerical predictions of the flow over the rounded- 

corner square are compared to the experimental measurements from Polhamus et dl. (1959). These 

investigators measured the forces and pressure distributions on a variety of forebody cross-sections 

over a range of Reynolds numbers and angles of attack, showing that there are important Reynolds 

number effects in the flow around forebodies at angle of attack. In the sub-critical regime (Reynolds 

numbers below about 5 x 105), boundary layer separation along the top surface of the rounded- 

corner square (upper-most horizontal surface in Figure 2a) occurs near the upper-front corner of 

the forebody, while for the super-critical flows the boundary layer remains attached along the lower 

and upper surfaces. For the ellipse the change in separation type is less pronounced given the con- 

figuration, with turbulent separation slightly aft of the upper shoulder and laminar boundary layer 

separation upstream of the upper shoulder of the model. The changes in boundary layer separation 

characteristics have significant effects on the streamwise and lateral forces with Reynolds number 

(the lateral, or side, force acts along the y axis in Figure 2). A reversal of the lateral force was 

measured in the experiments, i.e., negative for sub-critical flows and positive in the super-critical 

regime (for reference, the force is positive for an airfoil). Relevant to spin, the negative side force 

in the sub-critical regime is spin-propelling, while at the higher Reynolds numbers the positive side 

force is spin-damping. 

The effects measured by Polhamus et cd. (1959) are analogous to that of the drag crisis oc- 

curring around cylinders and spheres and are linked to boundary layer transition and the nature of 

the flow separation. While predicting details of the transition process is beyond the scope of the 

methods used in the current simulations, it is possible to construct well-defined computations to 

investigate the effect of the type of boundary layer separation on the flow. In particular, simula- 

tions were performed in the sub- and super-critical regimes in which the type of boundary layer 

separation was controlled via the initial and boundary conditions on the eddy viscosity. 

Following, Travin et al. (2001), a 'tripless' approach is employed for sub-critical flows in 

which the inflow eddy viscosity is zero. Non-zero values are seeded into the wake and the reversed 

flow that is established in the recirculating region is sufficient to sustain the turbulence model 

downstream of separation. Boundary layer separation in this case is laminar, with the model active 

following separation. For the super-critical flows the inflow eddy viscosity is set to a small value 

(3;;), sufficient to ignite the turbulence model near solid surfaces as the fluid enters the boundary 

layers. The subsequent separation is then of a turbulent boundary layer. 

Computations of the two-dimensional configurations presented below were performed using 

structured grids, most of the calculations of the three-dimensional flow were also performed on 

structured meshes Structured grids were generated using the control technique of Hsu and Lee 
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(1991). Using this technique, it was possible to control mesh spacing to the first point nearest the 

boundary (within one wall unit near solid surfaces), exert control over grid spacing tangential to 

the boundary, and also to maintain orthogonality of the mesh at all boundaries. Important to the 

application of DES as a tool for predicting the flow around complex configurations is application 

of the method on unstructured grids. For the three-dimensional computations, DES predictions ob- 

tained on an unstructured mesh were also evaluated against experimental measurements and results 

from the structured grids. The unstructured grid was generated using Gridgen (Steinbrenner et cd. 

2000), with prisms in the boundary layer and near-isotropic tetrahedra away from solid surfaces. 

Calculations of the three-dimensional flow around the forebody cross section were performed 

using both structured and unstructured grids. The unstructured grids are comprised of a combina- 

tion of tetrahedra and prisms, while the structured grids are comprised of hexahedra. Prisms are 

used in the boundary layer in order to reduce the number of cells as well as to improve the effi- 

ciency of the boundary layer solution. Boundary-layer grids comprised of tetrahedra often possess 

high aspect ratios and can be strongly non-orthogonal. This presents problems in calculation of the 

divergence of the gradient. Prisms are more orthogonal and place less burden on the solver. 

Finally, as also discussed above, one of the main objectives of the work are to understand 

forebody spin characteristics as they relate to side-force reversal and to assess/advance DES as a 

viable method for prediction of unsteady flows at high Reynolds numbers. The stability of DES 

results with changes in grid spacing is investigated, as well as other factors such as the dimension of 

the (statistically homogeneous) spanwise coordinate. DES results are also compared to predictions 

obtained from the unsteady Reynolds-averaged Navier-Stokes (URANS) equations (of both the 

two- and three-dimensional equations) and to simulations performed without an explicit turbulence 

model. The runs without a turbulence model are denoted as MILES (Monotone Integrated Large 

Eddy Simulation) to provide a link with relevant literature, although no detailed investigations were 

undertaken to evaluate the numerical dissipation in the current calculations and its role as an SGS 

model, and the numerical schemes are not monotone in a strict sense (see Fureby and Grinstein 

1999 for a discussion of the MILES approach). 

4   Results 

4.1    Two-dimensional computations - URANS 

The initial phase of the work was undertaken to develop and build confidence in the approach used 

to specify and control the type of boundary layer transition, i.e., either fully turbulent boundary 

layer separation or the tripless approach used for cases with laminar boundary layer separation. 

Unsteady RANS comprised the primary simulation technique for this stage of the work, the S- 

A model was employed to compute the eddy viscosity used to close the Reynolds stresses. The 

numerical solutions were of the unsteady incompressible flow using the fractional step method 
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outlined in §3.2.1. This portion of the study also enabled implementation and testing of the grid 

control strategy developed by Hsu and Lee (1991) for generation of structured meshes about the 

forebodies. A grid generation procedure was developed and tested for two canonical forebody 

cross-sections described above: a rounded-corner square and a 2:1 ellipse. Shown in Figures 2-4 

are views of each geometry. In Figure 3 and Figure 4 show the grid and entire computational 

domain (frame a of each figure), a view in the vicinity of the forebody is also shown (frame b of 

each figure). 

Important in application of the S-A model for URANS, as well as in the DES predictions 

presented in the next section, is resolution of the wall layer, i.e., the first grid point nearest a 

solid surface is located approximately one viscous unit from the surface with geometric stretching 

applied in the boundary layer. The stretching rate applied to the boundary layer grids were in the 

range 1.2 - 1.3, with the higher value representing a very aggressive stretching. The position of 

the first wall-normal grid point y+ is estimated via, 

v V  P 

where TW is the wall stress and related to the skin friction via Cf = 2Tw/(pU^0). The above 

expression can be rewritten in terms of the skin friction coefficient Cf, 

yt = %]f^-Reo, (60) 
where D is the body width/diameter and ReD = U^D/v. An estimate of yi corresponding to a 

viscous spacing approximately one wall unit can be obtained using a representative value of Cf, 

e.g, in the range Cj as 0.002 - 0.004, the higher value yielding a more conservative estimate of the 

near-wall spacing to the first point. For yf = 1, the formula (60) yields yi/D in the range 10~5 for 

the Reynolds numbers considered in this work, Rep on the order 105 - 106. 

For the rounded-corner square, Figure 3 shows the axial distance of the inlet from the front 

of the forebody is 3.5D, the downstream extent 7.5D, with the lateral dimension extending 3.5D 

at the maximum distance from the forebody. The domain for the 2:1 ellipse is similar, i.e., using 

the long axis as the characteristic length, the streamwise coordinate ranges — AD < x < 8D, 

the lateral dimension —4D < y < 4D. Figure 3b and Figure 4b show that near the forebody 

surface, the wall-normal grids are clustered, in the surface-tangent dimension the grids are shaded 

towards the wake with a higher density of cells in the aft region. Control of these features in 

the grid are relatively straightforward to achieve using the approach developed by Hsu and Lee 

(1991), a further advantage being the relatively low cell skewness. Grid refinement was carried out 

using simulations in which the surface-normal coordinate was refined from 100 to 150 points, the 

surface-tangential dimension was refined from 150 to 200 points. 

Calculations of the two-dimensional configurations were performed for Reynolds numbers of 

5 x 104 and 8 x 105. The lower Reynolds number was employed for the initial investigations of 

18 



the tripless characteristics of the model, simulations at this Reynolds number lowering the com- 

putational burden (e.g., allowing slightly coarser meshes) and also alleviating difficulties initially 

encountered with the tripless approach. Eddy viscosity levels were observed to "creep" upstream 

of separation due to numerical errors, this aspect necessitating the modification to the production 

term using fv3 as described in §3.1. An example of the influence of boundary layer separation on 

the nature of the solution along the top surface of the rounded-corner square is shown in Figure 5. 

Both frames of the figure show instantaneous velocity vectors colored by the eddy viscosity ratio 

vijv. The computations corresponding to each frame were performed ReD = 5 x 104, in Figure 5a, 

the boundary layers on the forebody surface are fully turbulent, this feature accomplished by seed- 

ing the inlet plane with a small level of eddy viscosity, vt/v = 3. This level of eddy viscosity is 

sufficient to activate the turbulence model in the boundary layers, a consequence and illustrated 

in Figure 5a is that the boundary layers possess sufficient momentum to withstand the adverse 

pressure encountered as the flow develops along the top surface of the forebody. Consequently, 

boundary layer separation is delayed, occurring near the upper rear corner as shown in the figure. 

Figure 5b shows instantaneous velocity vectors from the tripless solution. The tripless solution is 

created by seeding the initial flow with eddy viscosity and with zero eddy viscosity prescribed at 

the inlet to the computational domain. The reverse flow region sustains the model, Figure 5b shows 

that boundary layer separation occurs near the upper front corner of the forebody. In this case, the 

boundary layers developing along the forebody are effectively laminar and do not possess sufficient 

momentum to withstand the adverse pressure gradient that develops as the flow progresses around 

the upper front comer and along the top surface. The larger region of non-zero eddy viscosity (red 

vectors in the figure) is due to the separation, the recirculating region that has developed along the 

upper surface sweeping eddy viscosity into the regions above the forebody. Importantly for this 

case, the turbulence model remains dormant in the region upstream of separation. 

Variations in the pressure coefficient, skin friction, and "turbulence index" around the perimeter 

of the 2:1 ellipse are shown in Figure 6. The distributions are shown for a tripless solution at 

ReD = 5 x 104 in Figure 6a and a case with fully turbulent boundary layers at ReD = 8 x 105 

in Figure 6b. The horizontal coordinate defines the angle around the perimeter and is measured 

positive in the clockwise direction. The coordinates 0 = 0 and 360 degrees correspond to the 

windward symmetry point, the upper and lower "shoulders" of the ellipse coinciding with 0 = 90 

and 270 degrees (where the potential flow at 0 degrees angle of attack would possess the minimum 

pressure). The pressure coefficient distribution in both Figure 6a and Figure 6b possess common 

features on the front of the body, the stagnation pressure is predicted near 0 = 0 and there is 

a relatively rapid decrease as the flow accelerates around the upper and lower shoulders of the 

ellipse. The back pressure for the case with laminar separation in Figure 6a shows larger suction, 

an effect that will lead to a larger axial force. The skin friction distribution for both cases shows the 

zero crossing marking the location of flow separation. For the 2:1 ellipse, separation for the two 
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cases occurs at similar angles, only slightly delayed for the fully turbulent case around the lower 

corner, occurring at nearly the same angle around the upper corner. For both the tripless and fully 

turbulent solutions, C/ increases as the flow accelerates towards the upper and lower shoulders and 

then is nearly zero in the separated region. 

Also shown in the figure is the "turbulence index", which defines the position at which the 

turbulence model becomes active. For the S-A model, the turbulence index is defined as, 

H = -UTT-, (61) 
K    on 

where the coordinate n defines the surface normal. The index is zero in a laminar region, followed 

by a sharp increase in the "transition region", i.e., the region over which the model becomes active, 

and then remains around unity or takes on higher values in the fully turbulent regions. Figure 6a 

shows that for the tripless case the abrupt increase in the turbulence index coincides with the 

zero crossing in the skin friction, i.e., with boundary layer separation, in turn showing the tripless 

character of the solution in that the model remains dormant in the attached boundary layer upstream 

of separation. Figure 6b shows that for the fully turbulent boundary layers the turbulence index is 

essentially equal to unity prior to separation, abruptly increasing as the flow separates (the sharp 

increase due to small/zero values in uT). 

An example of the unsteady character of the URANS solution is illustrated for the rounded- 

corner square in Figure 7. Shown are vorticity contours for several phases of the motion through 

roughly one shedding cycle. The calculations are from a fully turbulent case at Reo = 8 x 

105 for which the turbulent boundary layers separate near the upper and lower surfaces of the 

model, an effect observed in the contours. The vorticity contours show essentially a periodic 

shedding, with well organized structures developing in the wake, the figure also showing that 

the asymmetry that develops in the wake due to the 10° angle of attack of the freestream. The 

distributions of the pressure coefficient, skin friction, and turbulence index corresponding to the 

frames shown in Figure 7 are shown in Figure 8. As observed earlier for the ellipse, the turbulence 

index is approximately equal to one in the attached boundary layers upstream of separation, sharply 

rising following flow detachment. Zero crossings in the skin friction again identify the separation 

location. For the fully turbulent solution, Figure 7 shows that separation occurs near the rear of 

the upper and lower horizontal surfaces, corresponding to angles 9 « 130° (top surface) and 8 ss 

230° (bottom surface). For all of the phases of the shedding, the pressure coefficient distribution 

shows that there is a very large acceleration as the flow negotiates the upper front corner, the 

deep decrease in Cp occurring because the boundary layer remains attached through this region. 

A smaller minima in Cp occurs near the lower front corner (9 PS 315°) due to boundary layer 

acceleration. The skin friction distribution shows that there is no boundary layer separation along 

the lower horizontal surface. A clearly observed effect of vortex shedding is the change in the 

pressure distribution along the rear surface of the forebody, for 130 < 9 < 225 degrees. Figure 8a, 
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Case Model Grid Size U x-y domain 

1 DES 100 x 149 x 151 3D baseline 
2 DES 100 x 149 x 301 QD baseline 
3 DES 150 x 200 x 151 3D baseline 
4 DES 120 x 149 x 151 3D padded 
5 DES unstructured, 3.55 x 106 cells 3D padded 
6 MILES 120 x 149 x 151 3D padded 
7 URANS 200 x 400 - baseline 
8 URANS 120 x 149 x 151 3D padded 

Table 1: Simulation parameters. Grid size reported as surface-normal x surface-tangential x 
spanwise; "baseline" is the smaller x-y domain, "padded" the larger x-y domain. URANS calcu- 
lations performed using the Spalart-Allmaras one-equation model. 

for example shows a relatively large suction along the rear vertical surface, the corresponding flow 

visualization in Figure 7a shows a vortex rolling up directly behind the rear vertical surface. 

4.2    Three-dimensional computations - DES and URANS 

In the first part of the study the tripless approach to producing solutions undergoing laminar bound- 

ary layer separation and with a turbulent wake were developed and tested. Overall, the behavior 

of the approach is well-defined, not sensitive to initial or boundary conditions, etc. In the second 

phase of the work, three-dimensional computations of the flow around the forebody were per- 

formed, a schematic of the geometry and indication of the angle of the incident flow is shown in 

Figure 9 for convenience. 

The parameters of the three-dimensional calculations are summarized in Table 1. Shown is the 

case number, model, grid size, spanwise period, and reference to the x-y domain size. Assessment 

of unstructured approaches to eddy-resolving calculations is enabled via Case 5, the ability to 

exert- greater control on cell distribution compared to the structured grids permitted generation of 

an unstructured mesh having 2.5 x 106 cells (of a total cell size of 3.55 x 106 cells) within two 

diameters of the model surface. 

The majority of simulations were performed on domains in which the spanwise dimension was 

three times the diameter, i.e., Lz = 3D. The influence of the spanwise period was investigated in 

Case 2 via computations performed on a domain with a doubling of the spanwise period to Lz = 6. 

Domain-size influences were also investigated in calculations with two domains having different 

outer-boundary placement. The smaller domain (referred to as "baseline" in the table) extended 

eight diameters downstream of the body and with a lateral extent also of 8D, a projection of the 

grid onto the x-y plane for the baseline configuration is shown in Figure 10. 

In calculations performed on the larger domains (referred to as "padded" in the table), the 
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streamwise extent to the outflow boundary downstream of the body was at approximately 20D, 

with the lateral dimension also approximately 20D from the model surface. As shown in the next 

section, there was a measurable effect of the baseline domain on the solutions, resulting in over- 

predictions of the stagnation pressure and axial force. Boundary conditions on the model surface 

were no-slip for the velocity components and turbulent viscosity. The normal momentum equation 

is used at solid walls to estimate the variation of pressure normal to the surface, while a one-sided, 

least-squares gradient method is used to estimate the variation of pressure tangential to the wall. 

Grid resolution effects were investigated by refining the mesh in the x-y plane by a factor 

of two. For the coarse grid with the shorter spanwise dimension (Lz = 3D), the structured- 

grid calculation was performed using approximately 2.2 x 106 points, the finer mesh calculation 

possessing about 4.5 x 106 grid points. Because A in (12) near the surface was set by the spanwise 

spacing, the thickness of the "RANS region", i.e., the dimension from the model surface to the 

interface at which d is set by the grid spacing for all the DES runs was 0.013D. The dimensionless 

timestep, At/(D/U00) (Uoo is the freestream speed), was 0.01, a conservative value chosen based 

on preliminary calculations and previous time-accurate computations of unsteady flows by the 

current investigators and other researchers (e.g., see Travin et cd. 2001). With At/(D/f70O) = 0.01, 

there are approximately 350 timesteps per main shedding cycle. 

From a given set of initial and boundary conditions for a particular flow type (tripless or fully- 

turbulent), the governing equations were time advanced through a transient as the flow evolved 

to its equilibrium condition. This transient, typically less than 20Z?/?7oo, was discarded and the 

simulations continued for an additional period of C(100D/t/oo). This period was sufficient for 

adequate convergence of averaged quantities and capture of the long timescales in the flow. Initial 

perturbations supplied to the flow triggered the breakdown in the wake and development of three- 

dimensional structures. 

A snapshot of the instantaneous velocity vectors in a plane near the upper rear corner (0 in the 

range 135°) for a turbulent separation run (Case 4) is shown in Figure 11. The interface beyond 

which d is set by the grid has been drawn. The figure shows a smooth transition between the 

"RANS region" and "LES region" of the solution with essentially all of the boundary layer within 

the RANS region. In addition, the outer part of the boundary layer has very little sensitivity to the 

destruction term of the S-A model, the only one that changes between RANS and LES modes. 

The different structure of the sub- and super-critical flows is illustrated in Figure 12. For the 

sub-critical flow at Re = 105 the attached boundary layers are laminar and cannot sustain the 

development of the adverse pressure gradient in the upper front corner with separation occurring 

around 8 ss 45°. In the "tripless" mode, the turbulence model is dormant upstream of separation, 

with flow reversal sustaining the model downstream of separation. Contrasted with Figure 12b, 

the tripless case exhibits massive separation along the upper surface, the fully turbulent solution 

in Figure 12b shows the influence of the fully turbulent boundary layers along the forebody, in 
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particular the attached flow along the top surface with separation towards the rear.  Both flows 

show that the wake is chaotic and three-dimensional. 

Shown in Figure 13 are a representative sample of pathlines in the vicinity of the upper front 

corner of the forebody for the flow at Re = 105 (Case 4 in Table 1). The pathlines in the figure are 

colored by the value of the viscosity ratio vtjv. They cross in this view, because the flow is three- 

dimensional. Upstream of separation the eddy viscosity is zero (as indicated by the blue color of 

the pathline). In the separated region the reversing flow sweeps turbulent fluid from downstream 

into contact with the separating flow. Important to note is that there is not a "transition creep", i.e., 

a numerical diffusion of non-zero eddy viscosity into regions upstream of separation. 

In "natural" applications of DES, the detached regions of the flow are computed using LES, 

in this case with a one-equation model for the subgrid-scale eddy viscosity. An advantage of LES 

is that mesh refinement resolves more flow features, in turn lessening modeling errors and driving 

the solution towards the DNS limit. The effect of mesh refinement was investigated by doubling 

the x-y grid in Case 3 as compared to Case 1 (c.f., Table 1). Shown in Figure 14a and Figure 14b 

are instantaneous vorticity contours from Case 1 and Case 3, respectively, for a simulation with 

turbulent separation at Re = 8 x 105. Cuts of the vorticity field from three spanwise planes are 

shown for each case and provide an example of the strong spanwise variation in the DES solution. 

As also the case for classical LES, Figure 14 shows that the effect of the mesh refinement is to 

resolve smaller-scale eddies in Case 3. This feature in the DES was also illustrated in the circular 

cylinder calculations of Travin et al. (2001). 

Also shown in Figure 14 are vorticity contours in the forebody wake from solutions obtained 

using the unstructured grid (Case 5) and a tripless solution with simulation parameters correspond- 

ing to Case 3. The unstructured-grid prediction shows roughly a comparable range of eddies re- 

solved in the wake as the fine-mesh result obtained for Case 3. That the unstructured result yields 

similar structure as Case 3 is significant since it demonstrates that unstructured meshes provide 

an efficient means for performing DES, the ability to to exert a more local control on the mesh in 

the focus region in the wake of the body an important aspect for turbulence-resolving simulations. 

Vorticity contours from the tripless solution in Figure 14d show a substantially different structure 

than achieved in the fully turbulent solutions. Boundary layer separation is apparent near the upper 

front corner of the forebody, with a wider wake developing downstream. A zoomed view of the 

vorticity contours is shown in Figure 15 shows instantaneous vorticity contours in the wake for 

the fully turbulent solution from the structured-grid prediction (Case 3) and the unstructured-grid 

prediction (Case 5). Visually, the range of scales resolved in the wake is comparable for the two 

grids. 

Force coefficients Cx and Cy in the axial and lateral directions, respectively, are defined using 

the freestream density and velocity and frontal area of the forebody. Figure 16 shows the force 

coefficient time histories for the two-dimensional URANS solution at Re = 8 x 105. A fraction of 
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the time history is shown in the figure, i.e., following the initial transient. The figure shows the 2D 

URANS solution is temporally periodic, with large swings in the side force coefficient compared 

to the axial value as the flow undergoes a shedding cycle. 

A representative force coefficient history for a DES run is shown in Figure 16, for a turbulent 

separation run at Re - 8 x 105 (Case 2). Similar to Figure 16, a transient of roughly 20 non- 

dimensional time units has been excluded from the figure (note also the longer time integration for 

the DES). Unlike the 2D URANS, a strong modulation is apparent in the side force coefficient Cy, 

similar to that observed in related studies of cylinders and other bluff bodies (e.g., see Travin et al. 

2001). The side-force modulation is complex and seems to be an intrinsic feature of the chaotic, 

three-dimensional flow. For the forebody, the modulation develops via the interaction of spanwise 

and streamwise vorticity in the near wake. DES calculations on domains in which the spanwise 

coordinate Lz was 1.5D did not yield force modulation and suppressed three-dimensionality of 

the primary spanwise structure (although the solution possessed streamwise vorticity). Predictions 

on the domain with Lz — 1.5D yielded large over-predictions of the axial force. Though not 

shown here, force-coefficient histories for all of the three-dimensional turbulent separation cases - 

including the 3D URANS result - exhibited force modulation. 

Time-averaged force coefficients for the turbulent separation cases are summarized in Table 2. 

The 2D URANS, which produces a periodic shedding and cannot accurately account for the force 

modulation, substantially over-predicts the mean axial force coefficient (Cx). This feature is analo- 

gous to the circular cylinder where two-dimensional URANS yields large drag (Travin et al. 2001). 

For the DES, force coefficients from the smaller (baseline) domains are higher than the measured 

values and than those from calculations performed on the larger domain (c.f., Cases 1-3). A com- 

parison of Case 3 against Cases 1-2 show a trend towards lower axial force with grid refinement 

in the x-y plane. In addition, the axial force slightly decreases in Case 2, computed on the longer 

spanwise domain, compared to Case 1. Nevertheless, (Cx) is too high and, as shown below, the 

over-prediction arises from the influence of the computational domain, which effectively constrains 

the flow and raises the stagnation pressure coefficient by about 0.1 compared to results obtained on 

the larger domains (Cases 4-5). DES predictions on the larger domain using both structured and 

unstructured grids are in quite good agreement with the measurements of Polhamus et al. (1959). 

Interestingly, the 3D URANS also yields forces in good agreement with the measurements and 

padded-domain DES predictions. On the other hand, calculations without an explicit turbulence 

model (Case 6) markedly over-predict the axial force due to the poor treatment of the attached 

boundary layers, as described in more detail below. 

Pressure coefficients around the body for the fully-turbulent runs {Re = 8 x 105) are shown 

in Figure 17. The angle 9 is measured counter-clockwise from the aft-symmetry point of the 

forebody. For the flow at 10° angle of attack, the maximum Cv occurs about 15 - 20° below the 

fore-symmetry point (6 PS -160° as shown in Figure 17). For Cases .1, 3, and 7, the stagnation 
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Case Model (Ca) (Cy) 
1 DES 0.57 0.92 
2 DES 0.55 0.98 
3 DES 0.51 0.96 
4 DES 0.46 0.94 
5 DES 0.43 0.83 
6 MILES 0.76 0.62 
7 2D URANS 0.75 0.88 
8 3D URANS 0.43 0.94 
- expts. 0.4 0.9 

Table 2: Time-average force coefficients from turbulent separation cases at Re = 8 x 105 (time 
averages denoted using (•)). Experimental measurements are from Polhamus et cd. (1959). 

Cp is over-predicted, an error introduced by the use of the smaller x-y domain. For these cases 

the over-prediction in the stagnation pressure is 0(0.1), comparable to the over-prediction of the 

mean axial force (c.f., Table 2). Comparing the effect of the domain (Case 1 and Case 4) shows 

a reduction in the axialforce coefficient on the larger domain, closer to the measured value of 

about 0.4 as also summarized in Table 2. The 2D URANS, with a finer x-y grid compared to the 

three-dimensional runs also shows deeper minima in Cv in the vicinity of each corner, providing 

some insight into the effect of grid resolution on the pressure field. 

An effect of the Reynolds number reproduced in the fully-turbulent solutions in Figure 17 is 

that the boundary layers around the upper front and lower front corners (6 « ±135°) remain at- 

tached, as evidenced by the strong pressure minima in these regions, especially around 9 K, 135°. 

It is apparent that all of the simulations predict attached boundary layers around the upper front 

corner, with the exception of the MILES run (Case 6), i.e., the simulation performed without an 

explicit turbulence model in which the (laminar) boundary layer separates. Accurate prediction of 

boundary layer growth and separation in MILES requires the boundary layer grid be sufficiently 

fine to resolve the small near-wall turbulent structures (as would also be required in whole-domain 

LES with an explicit SGS model). In practice, however, boundary layer grids will not be suffi- 

ciently dense for high Reynolds numbers flows because of the high computational cost. In the 

present case, the resulting MILES boundary layer prediction lacks turbulent structures and is es- 

sentially laminar. 

Along the rear vertical surface (in the vicinity 9 = 0 in Figure 17) the 2D URANS (Case 7) 

pressure distribution is far from the measured values, resulting in a large streamwise force (c.f., Ta- 

ble 2) as also observed in other two-dimensional URANS predictions of bluff-body flows (e.g., see 

Travin et al. 2001). For all other cases shown in the figure, including the 3D URANS, predictions 

of the rear-surface pressures are reasonable, close to the measurements of Polhamus et al. (1959). 

Consequently, for the DES and 3D URANS calculations on the padded domains (Cases 4, 5, and 
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8), the overall pressure distributions are adequate and the axial and streamwise forces exhibit rea- 

sonable agreement with measurements. The accuracy of the 3D URANS result is surprising since 

flow visualizations show the solution lacks the streamwise vorticity apparent in the DES predic- 

tions shown in Figure 12. Flow visualizations show that the 3D URANS solution exhibits weak, 

but persistent, three-dimensionality in-the primary spanwise vorticity shed from the forebody. Be- 

cause the peak suction is missed in the MILES run (Case 6), the axial force is too high, yielding a 

similar (Cx) to the 2D URANS, though the causes for the over-predictions by these two techniques 

are not the same. 

Mean side-force coefficients summarized in Table 2 show that the DES predictions of the lateral 

force coefficient (Cy) are in general not far from the measurements reported by Polhamus et al. 

(1959). The lateral force prediction in the MILES case provides another illustration of the error that 

can arise due to the boundary layer treatment in this technique. As also noted in the C'p distribution 

and axial force coefficient, the 3D URANS is again accurate and apparently able to resolve enough 

of the 3D variation important to accurate force predictions. 

Laminar separation cases in the DES were computed for most of the parameter combinations 

summarized in Table 1. The Reynolds number in the laminar separation runs was 1 x 105 for the 

DES (4 x 105 for the 2D URANS shown below), well below the critical value found by Polhamus et 

al. (1959) of approximately 5 x 105. In the tripless mode, the upstream eddy viscosity was zero. 

The wake was initially seeded with eddy viscosity and the reversing flow established behind the 

forebody is sufficient to sustain the turbulence model following separation. 

A representative force history from a laminar separation case is shown in Figure 18. The sim- 

ulation parameters for this case correspond to those of Case 4 in Table 1. As shown qualitatively 

via Figure 12, below the critical Reynolds number the flow separates in the vicinity of the upper 

front corner of the forebody. The measurements of Polhamus et al. (1959) indicate that the bound- 

ary layer along the lower surface of the forebody remains attached. The pressure distribution then 

develops lower pressures along the lower forebody surface compared to the upper surface, which 

has the result of reversing the magnitude of the side force as compared to the values measured at 

higher Reynolds numbers, past the critical value. 

The force histories shown in Figure 18 show a higher axial force than in the fully turbulent 

runs. The mean axial force for this case is around 0.8, not far from the value reported in Table 2 

for the MILES run at Re = 8 x 105, which also experiences flow detachment in approximately 

the same region near the upper front corner. More importantly, the side force Cy in Figure 18, 

while chaotic, is only infrequently negative. Therefore, the mean side force will not be negative 

(the mean Cy is 0.38 for the trace in Figure 18) and the simulation does not yield a reversal in the 

magnitude of the side force. Changing the type of separation produces a very tangible move in the 

correct direction, but still an insufficient one. 

The pressure coefficient distribution around the forebody for the laminar separation DES (Case 4 
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parameters) is shown along with the experimental measurements of Polhamus et cd. (1959). For 

comparison, the Cv distribution from the 2D URANS calculation at Re = 4 x 105 is also shown. 

Consistent with the flow visualization shown in Figure 12, flow detachment around 9 « 135° re- 

sults in a substantially higher Cp compared to the turbulent separation case in Figure 17. Both 

the DES and 2D URANS have lower minima, indicative of delayed boundary layer separation as 

compared to the experiments. Near the lower front surface (0 w —135°), measurements show a 

deeper minimum than predicted in the DES. The 2D URANS, on the other hand, comes closer to 

predicting the pressure minima along the lower surface. Along the rear vertical surface (9 RJ 0°), 

DES predictions of the pressure distribution are reasonable. However, because of the deeper min- 

ima in the DES Cv near 9 « 135° and higher Cp along the lower flat surface, side force reversal 

cannot occur. Inspection of the instantaneous fields shows that along the lower flat surface (in the 

vicinity of 9 « 135°), a thin region of reversed flow occurs in the DES (in the mean). This reversed 

flow region contributes to an effectively altered geometry that prevents development of a deep Cv 

minimum as apparently occurs in the experiments. To determine if the development of the thin 

region of reversed flow was caused by numerical and/or modeling errors, a Direct Numerical Sim- 

ulation of the two-dimensional flow at Re = 1 x 104 was conducted using a grid of 1600 x 1200 

points. The DNS result shows a similar thin region of reversed flow along the lower surface of the 

forebody, near the lower front corner. Though not shown in Figure 19, the Cv distribution for the 

DNS is similar to the tripless DES prediction at Re = 1 x 105. 

5    Summary and Perspectives 

DES was applied to prediction of the separated flow around an idealized jet-fighter forebody at 10° 

angle of attack. Influences of domain size, grid refinement, and turbulence model were investi- 

gated in cases in which boundary layer separation was either laminar, or turbulent. The initial and 

boundary conditions on eddy viscosity set the type of boundary-layer separation, aimed at flows 

above or below the critical Reynolds number which controls a reversal of the side force in the 

experimental measurements of Polhamus et al. (1959). 

In general, DES predictions of the super-critical flow seem robust, tending towards experimen- 

tal measurements with grid refinement, for example. The complex shedding process and mod- 

ulation in the forces are consistent with circular-cylinder behavior and appear to be represented 

reasonably adequately, based on the agreement between simulation and measurement of the pres- 

sure distribution and forces. In the sub-critical regime, no simulation technique applied during the 

course of this study (DES/LES, DNS, and preliminary calculations using vortex methods) yielded 

a sign change in the side force. Small differences in the geometry, hysteresis, and sidewall effects 

are three sources that might explain the differences between predictions of the sub-critical flow and 

experimental measurements. 
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Aside from these effects, boundary layer treatment of the sub-critical flow may be simplistic, 

although fully "state-of-the-art". The advantage of the tripless approach is that the simulation 

parameters are unambiguous (the results depend only on the model, and not on transition locations 

chosen case by case). In practice, there can be substantial regions of laminar flow and a prediction 

of boundary layer transition is required. Details of the processes of separation and transition to 

turbulence as they inter-mingle continue to strongly challenge current modeling approaches. 

In the present application, the attached boundary layers lie entirely within the "RANS region" 

of the DES solution. As the flow detaches, in the separating shear layers the wake develops new 

instabilities that result in the rapid growth of a chaotic and three-dimensional wake. The lack of 

eddy content in the detaching boundary layers represents a relatively small error to the solutions 

presented here (its length scale would be several times smaller than that of the new instabilities). 

In other applications, e.g., flows with shallow separations, it will be advantageous and necessary 

to seed the upstream flow with 'eddy content', considerably refine the grid to support these eddies, 

and initiate LES in the attached boundary layers prior to separation. 

The current study also provided an opportunity to assess the solver and build confidence in 

the application of a second-order unstructured method for DES applications. The algorithm was 

sufficiently accurate to capture the growth of instabilities in the wake on both structured and un- 

structured grids of reasonable density. Streamwise vortices were captured with between five and 

ten cells in both cases. These features are connected to aspects of the numerical method, such as 

least-squares calculations of spatial derivatives and the use of non-linear dissipation (i.e., a TVD 

type limiter). Higher order methods should be expected to retain a given solution quality while 

reducing the number of cells required. However, obtaining higher order solutions on unstructured 

grids is significantly more challenging than on structured grids. Additionally, higher order methods 

would likely reduce the scalability of the algorithm. A side-by-side comparison to a higher-order 

numerical method would provide important estimates of potential benefits from a higher order of 

accuracy (and/or lower level of numerical dissipation), in turn allowing one to determine the trade- 

offs between various approaches. DES predictions on the unstructured grid showed the potential 

benefit of the unstructured approach in placing points precisely where they are needed - in the near 

wake. This study, however, is not a comprehensive testing of the numerics, since it only included 

experimental surface pressures for validation. More detailed comparisons, including wake profiles 

and spectra are needed to further assess the current approach. 

The research reported as part of this undertaking and related efforts are increasing confidence 

in the use of Computational Fluid Dynamics as a more viable tool, capable of providing accurate 

predictions of unsteady flow in regimes which have been either very difficult to predict (using 

URANS) or pose too large a computational cost (using LES). Increasingly, many military aircraft 

are comprised of unusual configurations, e.g, AWACS-like antennas, joined wings, stealth shapes, 

etc. Given these disparate configurations, there is a pressing need for detailed information about 
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their aerodynamics that will be continue to pose significant problems for traditional testing based 

on wind-tunnel and flight tests. CFD is positioned to provide detailed predictions on timescales 

that will complement current efforts used for analysis and some engineering design. 

Advances in DES currently depend both on the physical modeling, e.g., incorporation of rough- 

ness models, treatment of laminar-to-turbulent transition, as well as on numerical aspects such as 

grid generation, code performance for unsteady flow simulations, and issues related to factors such 

as numerical dissipation. Unstructured grids appear to hold great promise for complex configura- 

tions, a key finding of the present work was the similar, and accurate, prediction of the forces and 

pressures acting on the forebody in calculations using unstructured grids as compared to structured- 

grid results. This finding reinforces the importance of grid quality, e.g., low cell skewness, as the 

important factor for assessing quality, rather than simply whether the grid is unstructured or struc- 

tured. For DES, guiding the grid, e.g., finely meshing the "focus region" where additional flow 

detail is crucial is relatively straightforward using unstructured grids. Further, with the continued 

development and application of adaptive gridding, the accuracy and fidelity of DES predictions 

should continue to improve. 
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Figure 1: (a) Schematic representing coordinate transformation from the Cartesian system to a 
curvilinear non-orthogonal system; (b) local volume surrounding the point P, areas bounding the 
control volume surrounding P given by Sq. 
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Figure 2: Side view of the rounded-comer square (in a) and 2:1 ellipse (in b). Corner radius of the 
rounded-corner square is 1/4 of the body width/diameter D. Flows are from left to right at angle 
of attack (every fourth grid point shown in the above frames). 
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Figure 3: Side view of the structured grid for solution of the flow over the rounded-corner square. 
Corner radius is 1/4 of the body width/diameter D. Flow is from left to right at angle of attack, (a) 
entire computational domain for two-dimensional simulations; (b) zoomed view in the vicinity of 
the box showing clustering of grid points in the wake region. 
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Figure 4: Side view of the structured grid for solution of the flow over the 2:1 ellipse. Flow is from 
left to right at angle of attack, (a) initial domain for two-dimensional simulations; (b) zoomed view 
in the vicinity of the ellipse showing clustering of grid points in the wake region. 
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Figure 5: Instantaneous velocity vectors colored by the eddy viscosity ratio, Re = 5 x 104, 10° 
angle-of-attack. (a) turbulent separation - inlet eddy viscosity ratio vt/u = 3; (b) laminar sepa- 
ration - inlet eddy viscosity ratio vt/v — 0. Flow detachment near upper rear corner in (a), flow 
detachment near upper front corner in (&). 
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Figure 6: Pressure coefficient, Cp, skin friction coefficient, C/, and turbulence index it around the 
perimeter of the 2:1 ellipse. Re = 5 x 104 in (a), fie = 8x 105 in (6). Cp\ ©—© 1000 x Cf; 
 it. Angles are measured from the fore-symmetry stagnation point. 
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Figure 7: Instantaneous vorticity contours in the wake of the rounded-corner square, Re = 8 x 105, 
turbulent separation. Evolution in time through one shedding cycle evolves from (a) to (I) 
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Figure 8: Pressure coefficient, Cp, skin friction coefficient, Cj, and turbulence index it around the 
perimeter of the rounded-corner square, Re = 8 x 105, turbulent separation. Cp; e—& 1000 x 
C/\ iL. Angles are measured from the fore-symmetry stagnation point. Evolution in time 
through one shedding cycle is from (a) to (0- 

39 



y 

-*-x 

1.0 

Figure 9: Forebody cross section. Corner radius is 1/4 of the body width/diameter D. Angle of 
attack measured with respect to the streamwise x axis. 

Figure 10: Three-dimensional perspective of the structured grid around the rounded-corner square. 
Spanwise dimension is six times the forebody diameter as shown above. 
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Figure 11: Demarcation between RANS and LES regions, Case 1. Instantaneous velocity vectors 
colored by the eddy viscosity ratio also shown. 
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Figure 12: Isosurface of the instantaneous vorticity colored by pressure. Pressure contours pro- 
jected onto the back plane of each frame, (a) Re - 1 x 105 (laminar separation); (b) Re = 8x 105 

(turbulent separation). 
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Figure 13: Instantaneous pathlines over the top surface of the forebody colored by the ratio of the 
turbulent eddy viscosity to the molecular viscosity vt/v. The pathlines are shown from a tripless 
solution in which the upstream eddy viscosity ratio is zero (blue pathlines in the frame), non-zero 
values occur in the separated region. 
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Figure 14: Instantaneous vorticity contours in three spanwise planes along the forebody. Fully- 
turbulent solutions at Re = 8 x 105, 10° angle of attack, (a) Case 1, (b) Case 3, (c) Case 5, (d) 
tripless solution, simulation parameters correspond to Case 3. 
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Figure 15: Contours of the instantaneous vorticity in the forebody wake at Re 
structured grid, Case 3; (b) unstructured gird, Case 5. 

8 x 105. (a) 
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Figure 16: Temporal evolution of the streamwise (Cx) and vertical (Cy) force coefficients,  (a) 
two-dimensional URANS prediction. Cx;  Cy. (b) DES, Case 2. 
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Figure 17: Pressure coefficient distribution around the forebody. Turbulent separation cases, Re = 
8 x 105. Symbols are measurements from Polhamus et al.  (1959).  Case 1; Case 3; 
 Case 4; Case 5; Case 6; Case 7; •—• Case 8. 
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Figure 18: Temporal evolution of the streamwise (Cx) and vertical (Cy) force coefficients. Tripless 
prediction, simulation parameters correspond to Case 4. 
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Figure 19: Pressure coefficient distribution around the forebody. Laminar separation cases. Sym- 
bols are measurements from Polhamus et al. (1959).  Case 4 (Re = 1 x 10s); Case 7 
(Re = 4 x 105). 
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